Click or drag to resize

DecisionTreeTrain Method (Matrix, IntegerArray, IListDecisionTreeFactorType, Vector, Double, Int32, Boolean, Boolean, Boolean, RandomGenerator)

Build the decision tree CART classifier.

Namespace:  FinMath.MachineLearning
Assembly:  FinMath (in FinMath.dll) Version: 2.4.7-0a995bd0ea1854c2c868ec3f8dae606c5777e170
Syntax
C#
public void Train(
	Matrix observations,
	IntegerArray classes,
	IList<DecisionTreeFactorType> factorTypes = null,
	Vector weights = null,
	double minimumObservationsNumber = 2,
	int numFoldsPruning = 5,
	bool doPrune = true,
	bool useHeuristics = true,
	bool useOneSERule = false,
	RandomGenerator random = null
)

Parameters

observations
Type: FinMath.LinearAlgebraMatrix
Observation matrix (N*M size). Columns corresponds to factors, rows to observation.
classes
Type: FinMath.DataStructuresIntegerArray
The vector (N size) class types.
factorTypes (Optional)
Type: System.Collections.GenericIListDecisionTreeFactorType
The array (M size) factor types (Continuous by default).
weights (Optional)
Type: FinMath.LinearAlgebraVector
The vector (N size) of any observation weight (ones by default).
minimumObservationsNumber (Optional)
Type: SystemDouble
Minimum number of observations in at the terminal nodes (2 by default).
numFoldsPruning (Optional)
Type: SystemInt32
Number of folds for minimal cost-complexity pruning (5 by default).
doPrune (Optional)
Type: SystemBoolean
Is use minimal cost-complexity pruning (default true).
useHeuristics (Optional)
Type: SystemBoolean
Is use heuristic search for nominal factors in multi-class problems (default true).
useOneSERule (Optional)
Type: SystemBoolean
If use the 1SE rule to make final decision tree - prune thee more harsh (default false).
random (Optional)
Type: FinMath.StatisticsRandomGenerator
Random number generator for cross-validation.
See Also