SVMRegressionTrainEpsilonSVR Method
|
Train \epsilon - Support Vector Regression
Namespace:
FinMath.MachineLearning.SVM
Assembly:
FinMath (in FinMath.dll) Version: 2.4.7-0a995bd0ea1854c2c868ec3f8dae606c5777e170
Syntax public void TrainEpsilonSVR(
Matrix observations,
Vector values,
bool autoScale = true,
SVMKernelBase kernel = null,
double C = 1,
double epsilon = 0.1,
double cacheSize = 100,
double eps = 0.001,
int maximumIterations = 0,
TimeSpan modelTrainTimeout = null,
bool shrinkingHeuristics = true
)
Parameters
- observations
- Type: FinMath.LinearAlgebraMatrix
Observation matrix (N*M size). Columns corresponds to factors, rows to observation. - values
- Type: FinMath.LinearAlgebraVector
The vector (N size) predicted values. - autoScale (Optional)
- Type: SystemBoolean
Auto scale observations. Normalize the observations matrix such that columns of observations are centered to have mean 0 and scaled to have standard deviation 1. - kernel (Optional)
- Type: FinMath.MachineLearning.SVMSVMKernelBase
The kernel function for SVM model (default RadialBasisFunction). - C (Optional)
- Type: SystemDouble
C is the penalty parameter of the error term (default 1). - epsilon (Optional)
- Type: SystemDouble
The epsilon in loss function (default 0.1) - cacheSize (Optional)
- Type: SystemDouble
The cache memory size in MB (default 100). - eps (Optional)
- Type: SystemDouble
The tolerance of termination criterion (default 0.001). - maximumIterations (Optional)
- Type: SystemInt32
The maximum iterations number (0 means auto). - modelTrainTimeout (Optional)
- Type: SystemTimeSpan
One model train timeout (0 means no restriction). - shrinkingHeuristics (Optional)
- Type: SystemBoolean
Whether to use the shrinking heuristics flag (default true).
See Also