Covariance Matrix Adaptation for High Dimension |
This topic contains the following sections:
This section describes the VD-CMA-ES algorithm implementation based on the paper [Akimoto, Auger, Hansen 2014] .
The VD-CMA-ES implements a restricted form of the CMA-ES where the covariance matrix is restricted to be . Where D is a diagonal matrix and v a single vector. Therefore this variant is capable of large-scale optimization.
Next most important methods and properties are featured in the VDCMA class:
Algorithm parameters:
Property | Description |
---|---|
Population size, offspring number. At least two, generally > 4. | |
Number of parents/points for recombination. | |
Initial coordinate wise standard deviation (step size). |
Multithreading:
Property | Description |
---|---|
Use multiple threads to find objective function minimum. |
1using System; 2using System.Collections.Generic; 3using System.Reflection; 4using System.Threading; 5using FinMath.LinearAlgebra; 6using FinMath.Statistics; 7using FinMath.MachineLearning.EvolutionaryAlgorithms; 8 9namespace FinMath.Samples 10{ 11 class EvolutionaryOptimizationSample 12 { 13 private static Object iterationsLock = new Object(); 14 private static int iterationsCounter = 0; 15 16 private static double ObjectiveSphere(Vector xArray) 17 { 18 lock (iterationsLock) 19 { 20 ++iterationsCounter; 21 } 22 23 return xArray.Sum(x => x * x); 24 } 25 26 private static double ObjectiveRastrigin(Vector xArray) 27 { 28 lock (iterationsLock) 29 { 30 ++iterationsCounter; 31 } 32 33 double ret = 0; 34 foreach (var x in xArray) 35 ret += x * x - 10.0 * Math.Cos(2 * Math.PI * x); 36 return 10 * xArray.Count + ret; 37 } 38 39 private static double ObjectiveRosenbrock(Vector x) 40 { 41 lock (iterationsLock) 42 { 43 ++iterationsCounter; 44 } 45 46 double ret = 0; 47 double xi, xi1; 48 49 xi1 = x[0]; 50 for (int i = 0, ie = x.Count; i + 1 < ie; ++i) 51 { 52 xi = xi1; 53 xi1 = x[i + 1]; 54 55 double t1 = xi1 - xi * xi; 56 double t2 = 1 - xi; 57 ret += 100 * t1 * t1 + t2 * t2; 58 } 59 return ret; 60 } 61 62 private static void TestOptimizer(Vector startPoint, BaseOptimizer optimizer, BaseOptimizer.ObjectiveDelegateType objective) 63 { 64 Console.WriteLine($""); 65 Console.WriteLine($"{optimizer.GetType().Name} with {objective.GetMethodInfo().Name} solution:"); 66 67 lock (iterationsLock) 68 { 69 iterationsCounter = 0; 70 } 71 72 optimizer.TerminationIterations = 300; 73 optimizer.TerminationTimeout = TimeSpan.MaxValue; 74 optimizer.TerminationObjectiveChange = null; 75 76 optimizer.Optimize(objective, startPoint); 77 Console.WriteLine($" Value: {optimizer.SolutionValue}"); 78 Console.WriteLine($" Point: [{String.Join(" ", optimizer.SolutionPoint)}]"); 79 Console.WriteLine($" Step: {optimizer.SolutionStep}/{optimizer.MinimizationSteps}"); 80 Console.WriteLine($" Calls: {iterationsCounter}"); 81 } 82 83 public static void Main(string[] args) 84 { 85 var startPoint = Vector.Random(4); 86 var optimizers = new BaseOptimizer[] { new CrossEntropy(), new CMSA(), new VDCMA(), new SimplexDownhill() }; 87 var objectives = new BaseOptimizer.ObjectiveDelegateType[] { ObjectiveSphere, ObjectiveRastrigin, ObjectiveRosenbrock }; 88 89 foreach (var opt in optimizers) 90 foreach (var obj in objectives) 91 TestOptimizer(startPoint, opt, obj); 92 } 93 } 94}