Click or drag to resize

Dirichlet

The Dirichlet distribution, often denoted Dir(α), is a family of continuous multivariate probability distributions parametrized by a vector α of k positive reals. It is the multivariate generalization of the beta distribution.

Dirichlet distribution gives the probability of choosing a given collection of m items from a set of k items with repetitions and the number of observations of each choice given by vector α.

This topic contains the following sections:

Constructors

Constructor

Description

Performance

set vector α

Creates new instance of Dirichlet with user specified parameters.

methodDirichlet(Vector)

set vector α and random generator

Creates new instance of Dirichlet with user specified parameters.

methodDirichlet(RandomGenerator, Vector)

set double α and dimension

Creates new instance of Dirichlet representing symmetric distribution (same α for all variables).

methodDirichlet(Double, Int32)

set double α, dimension and random generator

Creates new instance of Dirichlet representing symmetric distribution (same α for all variables) with user specified random generator.

methodDirichlet(RandomGenerator, Double, Int32)

Methods

Method

Description

Performance

sample

Generates random variable sample.

methodSample(Vector)

StaticSample(Vector, Vector)

Generates series of random variable samples.

methodSample(Matrix)

pdf

Probability density function.

DDirichlet Pdf

where B is the multinomial beta function. Note: xi>0 and Σxi=1 otherwise pdf equals 0.

methodPdf(Vector)

StaticPdf(Vector, Vector)

Properties

Property

Description

Performance

mean

Mean of the distribution.

DDirichlet Mean

where DDirichlet Sum

PropertyMean

mode

Mode of the distribution.

DDirichlet Mode

PropertyMode

variance

Variance of the distribution.

DDirichlet Variance

PropertyVariance

covariance

Covariance matrix of the distribution.

DDirichlet Covariance

PropertyCovariance