Click or drag to resize

Inverse Wishart

The inverse Wishart distribution, also called the inverted Wishart distribution, is a probability distribution defined on real-valued positive-definite matrices.

We say B follows an inverse Wishart distribution, if its inverse matrix has a Wishart distribution.

Inverse Wishart distribution parameters are inverse scale matrix Ψ and number of degrees of freedom m.

This topic contains the following sections:

Constructors

Constructor

Description

Performance

set inverse scale matrix Ψ and degrees of freedom m

Creates new instance of InverseWishart with user specified parameters.

methodInverseWishart(Matrix, Double)

set Ψ, m and random generator

Creates new instance of InverseWishart with user specified parameters.

methodInverseWishart(RandomGenerator, Matrix, Double)

Methods

Method

Description

Performance

sample

Generate random variable sample.

In place:

methodSample(Matrix)

Returning result:

StaticSample(Matrix, Double)

StaticSample(RandomGenerator, Matrix, Double)

pdf

Probability density function.

DInverse Wishart Pdf

where p is the order of the matrix Ψ, and Γ is the multivariate gamma function.

methodPdf(Matrix)

StaticPdf(Matrix, Matrix, Double)

Properties

Property

Description

Performance

inverse scale

Inverse scale matrix.

PropertyInverseScale

degrees of freedom

Number of degrees of freedom.

PropertyDegreesOfFreedom

mean

Means matrix.

DInverse Wishart Mean

PropertyMean

mode

Modes matrix.

DInverse Wishart Mode

PropertyMode

generation method

Method of normal distribution generation. See Normal

PropertyMethod